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Abstract

The three-dimensional evolution of a pure electron plasma is studied by means of a newly developed particle-in-cell

code which solves the drift-Poisson system where kinetic effects in the motion parallel to the magnetic field are taken

into account. Different results relevant to the non-linear dynamics of trapped plasmas and low-energy electron beams

are presented.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Single-species plasmas can be confined in Malmberg–Penning traps, where electrostatic fields are applied

to a set of aligned cylindrical conductors immersed in a uniform magnetic field directed along the axis of the

trap [1,2]. In this paper, we explicitly refer to electron plasmas: the plasma can be trapped in the device for a

long-time, exhibit typical features of two-dimensional (2D) non-linear fluid motion (e.g. vortex merger

[3,4]) and give rise to the formation of long-lasting coherent structures (vortex crystals [5]), as it approaches

thermodynamic equilibrium [6]. This behavior is justified on the basis of the equivalence of the axially aver-

aged drift-Poisson system, which describes the electron plasma, with the 2D Euler equation for an inviscid
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fluid in the limit vk=L � x2
p=2xc [7], where L is the length of the longitudinal potential well, vi the average

parallel velocity of the electrons, xp = (4pe2n0/m)1/2 the average plasma frequency (computed for a typical

density n0), and xc = eB/mc the electron cyclotron frequency in the externally applied magnetic field

B = Bez, m and �e being the electron mass and charge, respectively, and ez the unit vector in the z-direction

(along the axis of the trap). Three-dimensional (3D) effects can be of some relevance when the above
condition is not strictly satisfied [8].

A different plasma condition of interest can be considered, where a low-energy electron beam flows in the

system: the electrons are continuously emitted from the cathode and collected to the anode. In this case,

formation of structures and relevant phenomena can develop during the time spent by a single electron

in the device, i.e., L/vi, where L represents in this case the length of the beam (the distance between the

accelerating grid and the collector). The non-linear dynamics of the space-charge-limited flow [9] is strongly

affected by the presence of the axial magnetic field: when reflection occurs in the central part of the beam a

hollow electron column forms and fast coherent structures arise [10], possibly due to the development of
diocotron instability.

Many phenomena related to the mentioned complex behavior both of trapped plasmas and beams can

be described in the framework of the zeroth order drift approximation. In low density pure electron plas-

mas confined in Malmberg–Penning traps the characteristic plasma azimuthal rotation frequency xr is in

fact typically much larger than the electron–electron collision frequency and much smaller than the plasma

frequency [11],
xr

xp

’ xp

2xc

� 1. ð1Þ
In addition, the characteristic rotation velocity, vh, is much smaller than c,
vh
c
’

rpx2
p

2cxc

¼ rp
2de

xp

xc

� 1. ð2Þ
Here, de = c/xp is the electron skin depth and rp is the radius of the plasma column. In this regime, a purely

electrostatic description of the plasma dynamics can be adopted, with the electric field given by E = �$u,
and the motion of the particle gyrocenters can be described in terms of the particle drift equations. To lead-
ing order in the ratio (xr/xc)

2, and assuming the externally imposed magnetic field to be spatially homoge-

neous, the gyrocenter motion is simply given by
_x ¼ vE þ vkez; _vk ¼
e
m
ez � ru; ð3Þ
where vE ” (c/B)ez · $u is the E · B-drift velocity. Then the gyro-averaged Vlasov equation reduces to the

drift kinetic equation:
of
ot

þ _x � rf þ _vk
of
ovk

¼ 0; r2u ¼ 4pen; ð4Þ

n ¼ B
m

Z
dldvkf ðx; l; vk; tÞ; ð5Þ
where f = f(x,l,vi,t) is the distribution function of the guiding centers and l � mv2?=2B is the magnetic mo-

ment with v^ the perpendicular velocity.
Neglecting temperature effects in the perpendicular plane, the guiding center distribution is assumed as

f = F(vi,x,t)d(v^ � vE), where v^ denotes the velocity component perpendicular to the magnetic field, the

relevant Vlasov–Poisson system reads [12]:
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oF
ot

þ ðvE þ vkezÞ � rF þ e
m
ez � ru

oF
ovk

¼ 0;

r2u ¼ 4pen;
ð6Þ
where nðx; tÞ ¼
R
F dvk.

In this paper, we present the newly developed particle-in-cell [13] (PIC) code MEP (acronym of Mi-

lano Electron Plasma [14]) for the solution of the system (6). In the literature, many electromagnetic

[15–18] as well as electrostatic [19] 3D PIC codes are described. In the former case, the codes are usually

relativistic [15,16,18] (in many case they are also strongly parallel [15–17]) and are often aimed to the

study of relativistic beams or laser plasma interaction. The aim of the MEP code is to describe the behav-

ior of the plasma in a cylindrical Penning trap. The code has to be flexible and fast enough to fit different

experimental conditions. While many 2D PIC codes have been developed and successfully used (see, e.g.
[20]), only few 3D PIC codes have been applied to such configurations [21]. Most of the existing codes,

including those written especially for the case of non-neutral plasmas, are Cartesian [15,21], and/or adopt

periodic boundary conditions, while the MEP code uses a cylindrical grid, which is more natural for the

system under consideration; in particular, realistic and detailed boundary conditions can be easily im-

posed. There is also no need of a moving grid. In [19], e.g. the computational mesh fills a moving window

and is laid down anew at each time step to describe the acceleration and transport of space-charge dom-

inated beams in heavy ion inertial confinement fusion drivers. A ‘‘warped’’ Cartesian mesh is used to de-

scribe bends, and the Poisson�s equation is solved with a 3D Fast Fourier Transform for the Cartesian
part of the Laplacian operator (moving to the source term the non-Cartesian parts). In [21], the compu-

tation is done in a 3D Cartesian geometry (into which is embedded the confining cylinder) and the Pois-

son�s equation is solved using a 3D multigrid algorithm. A particular mention deserves Delzanno et al.

[22]: the geometry is cylindrical and compressional effects due to the finite size of the plasma column are

retained including into the equations terms depending on the temperature and the effective plasma length

(assumed as a function of the radial coordinate). In this case, some 3D effects are simply taken into

account, although the numerical code remains 2D.

Being limited to the study of a strongly magnetized plasma, the MEP code solves the guiding center drift
orbit equations, so it is faster than fully 3D codes, in which the shortest time scale to be resolved is the gyro-

period. This allows to follow the evolution of the system on a (relatively) long time even on a personal com-

puter. The reason for this is also the use of a fast algorithm for the solution of the Poisson�s equation (see

Section 2.3). The length of the run depends of course in general mainly on the total number of grid points,

the total number of macro-particles, the accuracy requested for solving Poisson�s equation and the final

(normalized) time. It depends also slightly on the chosen parameters (geometric and plasma parameters)

and from the number of configuration savings. An adaptive time advancement scheme is employed: This

is used to vary the step length automatically as the solution progresses, using small steps where the solution
varies rapidly, and longer steps when changes are slow. The Courant condition (xpDt < 1) is in any case

monitored to ensure that the code is numerically stable. It is therefore difficult to estimate in advance

the total time duration of a single run. The test cases which are described in the paper were run on a per-

sonal computer with a 1.8 GHz processor and 512 MB RAM memory. The simulations shown in the paper

lasted typically 24 h (CPU time). It is therefore practical to study the evolution of a trapped plasma to a

state characterized by the (possible) presence of coherent structures. In particular, in the beam configura-

tion case, an almost stationary state is reached with each run. To follow the ‘‘long-time’’ evolution of the

coherent structures can become impractical on a desktop computer in the trapped plasma case, but on that
time scale dissipative effects not included in the physical model may also begin to play a role. Finally, in the

MEP code the problem is fully written in Hamiltonian form, so that the Liouville�s theorem is satisfied by

the numerical scheme. In addition, the energy conservation can be easily monitored (see Section 2.4). For a

typical run with time-independent boundary conditions, the relative energy change is of the order of 10�5.
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The paper is organized as follows: the description of the MEP code is presented in Section 2; some char-

acteristic results obtained for trapped plasmas and beams are discussed in Section 3; Section 4 is devoted to

short conclusions and future developments of the code.
2. Description of the MEP code

2.1. Normalization of the equations

The evolution of the system is followed within a conducting cylindrical surface of radius R and length L

on which the (in general time-dependent) boundary conditions for the electrostatic potential are imposed.

Note that the system is determined by several geometrical and physical parameters: the magnetic field

strength B; the sizes R, L and the geometry of the emitting surface; the potentials which are imposed on
cathode, anode and drift tube; the initial electron velocity distribution and the initial current distribution

emitted by the source. For example, Malmberg–Penning traps usually use a spiral-wound tungsten filament

for the injection [14]. The MEP code is able to simulate this initial spatial distribution of the electrons; the

effect of an accelerating grid is considered by suitably ‘‘cutting’’ the spiral along rows and columns of a

given width. In addition, the code is able to take into account various initial velocity and current density

distributions.

In the following, dimensionless quantities are used. Length, time, density and potential are normalized to

R, xc=2x2
p, n0 and 4pen0R

2, respectively, where xp is computed for a specified electron density n0. Keeping
the same notation for the normalized quantities, Eq. (6) is rewritten as:
oF
ot

þ 1

2
ez �ruþ vkez

� �
� rF þ 1

M eff

ez � ru
oF
ovk

¼ 0;

r2u ¼ n

ð7Þ
with n ¼
R
F dvk. For a given geometry and an initial plasma distribution, the behavior of the system is,

therefore, characterized by the single parameter Meff, which plays the role of an effective mass,
M eff � 4x2
p=x

2
c ’ 4.115� 10�4 n0 ½107 cm�3�

B2 ½kG�
. ð8Þ
This gives Meff = 2n0/nB, nB being the so-called Brillouin density, nB ” (B2/8p)/mc2, so that 0 6Meff 6 2.

In the beam configuration and again for a given geometry and an initial spatial distribution of the

beam, at least an additional parameter is required to describe the system. This can be chosen, e.g.

as the injected current I (assumed to be normalized to the ratio between epR2Ln0 and the normalization
time).

Using the variable s ” r2, the equations of motion corresponding to the trajectories of the kinetic equa-

tion in (7), are:
ds
dt

¼ � ou
oh

;

dh
dt

¼ ou
os

;

dz
dt

¼ vk;

dvk
dt

¼ 1

M eff

ou
oz

.

ð9Þ
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2.2. Mesh

In the MEP code, Eq. (7) is discretized on an equispaced grid (with the only exception of the radial

cell around the cylindrical axis) in the coordinates s, h and z. The number of grid cells is denoted as Ns,

Nh and Nz, respectively. In principle, Nh and Nz can be arbitrary but the Fast Fourier Transform used
for the solution of the Poisson equation (see below) works faster when these grid numbers are powers

of two.

The grid for s is defined as s0 = 0, s1 = 1/(NsNh + 1), sj + 1 = sj + Nh/(NsNh + 1), s0 = 0, sj = (sj + sj + 1)/2,

j = 1, . . . ,Ns (s is the position of the center, while s denotes the lower boundary of a ‘‘radial’’ cell).

The grid for the azimuthal angle h is simply hl = 2p(l � 1)/Nh, l = 1, . . . ,Nh, with the periodicity relation,

hNhþ1 ¼ h1. Note in particular that the central cell has no subdivisions in h.
Finally, the grid for the axial coordinate z is defined as zk = (k � 1/2)L/Nz � L/2, k = 1, . . . ,Nz.

Each cell has the same volume DV = DsDhDz/2, with Ds = 1/(Ns + 1/Nh), Dh = 2p/Nh, and Dz = L/Nz,
respectively.

2.3. 3D Poisson equation solver

Using the coordinates (s,h,z), the Poisson equation is written as
4
o

os
s
ou
os

þ 1

s
o2u

oh2
þ o2u

oz2
¼ n; ð10Þ
ujs¼1 ¼ �uðh; zÞ and ujz¼�L=2 ¼ �u�ðs; hÞ represent the boundary conditions (possibly time-dependent).

A three-point finite differencing is applied to Eq. (10) on the above defined grid
nj;l;k ¼
4sjþ1

Ds2
ujþ1;l;k � uj;l;k

� �
�

4sj
Ds2

uj;l;k � uj�1;l;k

� �
þ 1

sjDh
2
uj;l�1;k � 2uj;l;k þ uj;lþ1;k

� �

þ 1

Dz2
uj;l;k�1 � 2uj;l;k þ uj;l;kþ1

� �
ð11Þ
for 1 < j < Ns and 1 < k < Nz. For j = 0 and j = 1, the equations are written as:
n0;k ¼
4n

s1 � s0

1

N h

XNh

l¼1

u1;l;k � u0;k

 !
þ 1

Dz2
u0;k�1 � 2u0;k þ u0;kþ1

� �
; ð12Þ

n1;l;k ¼
4s2
Ds2

u2;l;k � u1;l;k

� �
� 4ns1
Dsðs1 � s0Þ

u1;l;k � u0;k

� �
þ 1

s1Dh
2
u1;l�1;k � 2u1;l;k þ u1;lþ1;k

� �
þ 1

Dz2
u1;l;k�1 � 2u1;l;k þ u1;l;kþ1

� �
ð13Þ
(the numerical factor n is defined below), while for j = Ns it results
nNs;l;k ¼
8

Ds2
�ul;k � uNs;l;k

� �
�
4sNs

Ds2
uNs;l;k � uNs�1;l;k

� �
þ 1

sNsDh
2
uNs;l�1;k � 2uNs;l;k þ uNs;lþ1;k

� �
þ 1

Dz2
uNs;l;k�1 � 2uNs;l;k þ uNs;l;kþ1

� �
. ð14Þ
In Eq. (13) and in the following, s0 is kept for the sake of generality. Finally, at the two circular bases

(k = 1,Nz), one obtains:
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nj;l;1 ¼
4sjþ1

Ds2
ujþ1;l;1 � uj;l;1

� �
�

4sj
Ds2

uj;l;1 � uj�1;l;1

� �
þ 1

sjDh
2
uj;l�1;1 � 2uj;l;1 þ uj;lþ1;1

� �
þ 1

Dz2
2�u�

j;l � 3uj;l;1 þ uj;l;2

� �
; ð15Þ

nj;l;Nz ¼
4sjþ1

Ds2
ujþ1;l;Nz

� uj;l;Nz

� �
�

4sj
Ds2

uj;l;Nz
� uj�1;l;Nz

� �
þ 1

sjDh
2
uj;l�1;Nz

� 2uj;l;Nz
þ uj;lþ1;Nz

� �
þ 1

Dz2
uj;l;Nz�1 � 3uj;l;Nz

þ 2�uþ
j;l

� �
. ð16Þ
These relations can be cast in a matrix form, �n ¼ �Âu, or as
�nj;l;k ¼ �Aj;l;k;~j;~l;~ku~j;~l;~k; ð17Þ
where �n differs from n only in the boundary cells: here the definition of the density is modified to take explic-

itly into account the boundary conditions for u:
�nj;l;k � nj;l;k; j < Ns; 1 < k < Nz;

�nj;l;1 � nj;l;1 � 2�u�
j;l=Dz

2; j < Ns;

�nj;l;Nz ¼ nj;l;Nz � 2�uþ
j;l=Dz

2; j < Ns;

�nNz;l;k � nNz;l;k � 8�ul;k=Ds
2; 1 < k < Nz;

�nNs;l;1 � nNs;l;1 � 2�u�
Ns;l

=Dz2 � 8�ul;1=Ds
2;

�nNs;l;Nz ¼ nNs;l;Nz � 2�uþ
Ns;l

=Dz2 � 8�ul;Nz
=Ds2.

ð18Þ
Analyzing Eqs. (11)–(16), it can be shown that the operator Â is self-adjoint, i.e., Aj;l;k;~j;~l;~k ¼ A~j;~l;~k;j;l;k. In

addition, Â is positively defined and commutative with the rotation operator, ðR̂uÞj;l;k �
ð1� dhÞuj;l;k þ dhuj;lþ1;k, i.e., R̂Â ¼ ÂR̂.

Formally, the solution of the Poisson equation is u ¼ �Â
�1
�n, where the inverse matrix Â

�1
have to be

calculated only once. But the multiplication by the matrix Â
�1

requires a number of operations propor-
tional to N 2

c , where Nc ” NsNhNz is the total number of grid cells. A more efficient algorithm is intro-

duced. The Poisson�s equation is Fourier transformed both in the azimuthal and in the axial

coordinate. The computational grid is duplicated in the axial direction, the system is made periodic

in z, and a standard Fast Fourier Transform (FFT) is applied, so that a set of one-dimensional differ-

ential equations in the radial coordinate are solved. Inverse FFT is then applied to get the solution on

the grid.

More explicitly, potential and density are analyzed in Fourier series:
uj;l;k ¼
XNh=2

mh¼1�Nh=2

XNz

mz¼1�Nz

~uj;mh;mz
exp 2pi

mhðl� 1Þ
N h

þ mzðk � 1Þ
2Nz

� �	 

;

u0;k ¼
XNz

mz¼1�Nz

~u0;0;mz
exp 2pi

mzðk � 1Þ
2Nz

� �
;

ð19Þ

�nj;l;k ¼
XNh=2

mh¼1�Nh=2

XNz

mz¼1�Nz

~nj;mh;mz exp 2pi
mhðl� 1Þ

N h
þ mzðk � 1Þ

2Nz

� �	 

;

�n0;k ¼
XNz

~n0;0;mz exp 2pi
mzðk � 1Þ

2Nz

� �
.

ð20Þ
mz¼1�Nz
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In this representation, the number of Fourier complex amplitudes is larger than the number of points

in the grid, and additional conditions have to be imposed. Namely, the Fourier amplitudes satisfy the

relations:
~nj;mh;mz ¼ ~n	j;�mh;�mz
; ~uj;mh;mz

¼ ~u	
j;�mh;�mz

;

~nj;mh;mz ¼ �~nj;mh;�mz expðpimz=NzÞ; ~uj;mh;mz
¼ �~uj;mh;�mz

expðpimz=NzÞ.
The former relation is simply the reality condition for u and �n, while the latter assures that the same rela-
tion is obtained between every Fourier amplitudes ~uj;mh;mz

and �nj;l;k, including the boundary components

with k = 1 and k = Nz. Namely, these conditions make the Fourier transforms of the z-boundary equations

(16) identical with the transform of Eq. (11). Using Eqs. (19) and (20) in Eqs. (11)–(16) one obtains for

1 < j < Ns
~nj;mh;mz ¼
4sjþ1

Ds2
~ujþ1;mh;mz

� ~uj;mh;mz

� �
�

4sj
Ds2

~uj;mh;mz
� ~uj�1;mh;mz

� �
� 4sin2ðmhDh=2Þ

sjDh
2

~uj;mh;mz

� 4sin2ðmzpDz=2LÞ
Dz2

~uj;mh;mz
ð21Þ
or
~nj;mh;mz ¼ aj;mh;mzuj�1;mh;mz
þ bj;mh;mz

uj;mh;mz
þ cj;mh;mz

ujþ1;mh;mz
ð22Þ
with:
aj;mh;mz ¼
4sj
Ds2

;

bj;mh;mz
¼ �4

sjþ1 þ sj
Ds2

þ sin2ðmhDh=2Þ
sjDh

2
þ sin2ðmzpDz=2LÞ

Dz2

" #
;

cj;mh;mz
¼

4sjþ1

Ds2
.

ð23Þ
For j = 0, according to the first relation in Eq. (13), the coefficients are:
a0;0;mz ¼ 0;

b0;0;mz
¼ �4

n
s1 � s0

þ sin2ðmzpDz=2LÞ
Dz2

� �
;

c0;0;mz
¼ 4n

s1 � s0
.

ð24Þ
For j = 1, Eq. (13) gives:
a1;0;mz ¼
4ns1

Dsðs1 � s0Þ
; a1;mh;mz ¼ 0; mh 6¼ 0;

b1;mh;mz
¼ �4

s2
Ds2

þ ns1
Dsðs1 � s0Þ

þ sin2ðmhDh=2Þ
s1Dh

2
þ sin2ðmzpDz=2LÞ

Dz2

� �
;

c1;mh;mz
¼ 4s2

Ds2
;

ð25Þ
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while for j = Ns, Eq. (14) gives:
aNs;mh;mz ¼
4sNs

Ds2
;

bNs;mh;mz
¼ �4

2þ sNs

Ds2
þ sin2ðmhDh=2Þ

sNsDh
2

þ sin2ðmzpDz=2LÞ
Dz2

" #
;

cNs;mh;mz
¼ 0.

ð26Þ
The solution is then found by means of a standard Gauss elimination procedure:
~nj;mh;mz ¼ ~bj;mh;mz
~uj;mh;mz

þ cj;mh;mz
~ujþ1;mh;mz

;

~bj;mh;mz
� bj;mh;mz

þ ~aj;mh;mzcj�1;mh;mz
; ~aj;mh;mz � � aj;mh;mz

~bj�1;mh;mz

;

~~nj;mh;mz � ~nj;mh;mz þ ~aj;mh;mz
~~nj�1;mh;mz ;

~uj;mh;mz
¼ 1

~bj;mh;mz

~~nj;mh;mz �
cj;mh;mz

~bj;mh;mz

~ujþ1;mh;mz
.

ð27Þ
Inverse Fast Fourier Transform is then applied to get the solution on the grid. With this algorithm there is

no need of matrix inversion and the Poisson�s equation is solved with a number of operations proportional

to Ncln(NhNz).

2.4. Hamiltonian formulation

The system governed by Eq. (7) is simulated as an ensemble of macro-particles with fixed sizes Ds, Dh
and Dz, using a particle-in-cell method. Let the total number of macro-particles be Np and let the ath
macro-particle be characterized by the position sa,ha,za and the z-momentum pa. It is assumed that the

macro-particle gives a contribution wj,l,k;aNc/Np to the electron density nj,l,k in the cell {j, l,k}. The weight

functions wj,l,k;a(sa,ha,za) satisfy the condition
P

j;l;kwj;l;k;a ¼ 1, which provides the normalization of the par-

ticle density n and the charge conservation. The same weight functions are used for the computation of the

potential corresponding to the particle position, uaðsa; ha; zaÞ ¼
P

j;l;kwj;l;k;aðu0
j;l;k þ uvac

j;l;kÞ, where u0
j;l;k is the

solution of the Poisson equation with zero boundary conditions and uvac
j;l;k is the vacuum potential in the cell

corresponding to the solution of the Laplace equation, $2uvac = 0 with the given boundary conditions
�u and �u�. The equations of motion corresponding to Eq. (9) can be written in Hamiltonian form, using

the ‘‘momenta’’ sa,pa and the corresponding conjugated variables ha,za. The Hamiltonian function is written

as:
Hðs; p; h; zÞ ¼
X
a

p2a
2M eff

þ Uðs; h; zÞ; ð28Þ

U ¼ � 1

2

X
a

X
j;l;k

wj;l;k;au
0
j;l;k �

X
a

X
j;l;k

wj;l;k;au
vac
j;l;k

¼ 1

2

X
a

X
j;l;k

X
j0;l0 ;k0

wj;l;k;aA
�1
j;l;k;j0;l0 ;k0nj0 ;l0 ;k0 �

X
a

X
j;l;k

wj;l;k;au
vac
j;l;k ð29Þ

¼ N c

2Np

X
a;b

X
j;l;k

X
j0 ;l0;k0

wj;l;k;aA
�1
j;l;k;j0 ;l0 ;k0wj0;l0 ;k;0;b �

X
a

X
j;l;k

wj;l;k;au
vac
j;l;k.
To obtain the equations of motion one has to calculate the derivatives oH/ofa, where fa is either sa, or ha or
za. Since the matrix Â

�1
is self-adjoint, the derivatives of the Hamiltonian for the equations of motion can
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be calculated as oH/ofa = �oua/ofa. The equations of motion for the computational particles are solved in

the code by means of the Runge–Kutta–Fehlberg predictor–corrector scheme [23].

Piecewise quadratic weight functions which are continuous with their first derivative are used:
wj;l;k;aðsa; ha; zaÞ ¼ W
sa � sj
Ds

� �
W

ha � hl
Dh

� �
W

za � zk
Dz

� �
for j > 1;

w1;l;k;aðsa; ha; zaÞ ¼ W 1

sa � s1
Ds

� �
W

ha � hl
Dh

� �
W

za � zk
Dz

� �
;

w0;k;aðsa; ha; zaÞ ¼ W 0

sa � s0
Ds

� �
W

za � zk
Dz

� �
ð30Þ
with:
W ðxÞ ¼

3
4
� x2; jxj 6 1=2;

1
2

3
2
� jxj

� �2
; 1=2 6 jxj 6 3=2;

0; jxj P 3=2;

8><
>: ð31Þ

W 1ðxÞ ¼

1þ 2x
1þ2s1=Ds

; x 6 �1=2;

3
4
� x2 � 1�2s1=Ds

2þ4s1=Ds
x� 1

2

� �2
; jxj 6 1=2;

1
2
x� 3

2

� �2
; 1=2 6 x 6 3=2;

0; x P 3=2;

8>>>>><
>>>>>:

ð32Þ

W 0ðxÞ ¼

1� 2x
1þ2s1=Ds

; x 6 s1=Ds;

1
1þ2s1=Ds

x� 1� s1
Ds

� �2
; s1=Ds 6 x 6 1þ s1=Ds;

0; x P 1þ s1=Ds.

8>><
>>: ð33Þ
Note that as long as a sufficient number of macro-particles is used in the simulation (every cell occupied by

the plasma should contain at least some macro-particles), this charge assignment scheme introduces little

numerical noise.

If the space is filled by macro-particles with a uniform density, then all cells with j > 1 get a density

nj;l;k �
P

awj;l;k;aN c=Np ¼ 1 (here it is taken into account that the cell volume is DsDhDz/2, with Ds =
Nh/(NsNh + 1), Dh = 2p/Nh, Dz = L/Nz and the weight function is integrated over this volume). For j = 0,

1, the integration gives
n0;k ¼
N h=3þ 1þ 1=N h

1þ 2=N h
; n1;l;k ¼ ðN h þ 1� n0;kÞ=N h ð34Þ
(here it is taken into account that s1 = Ds/Nh).

With these densities, Eqs. (11) and (13) are satisfied by:
uj;l;k ¼ C þ sj
4
¼ C þ Ds

4
j� 1

2
þ 1

N h

� �
if j > 1;

u1;l;k ¼ C þ s2
4
� Ds

N hn1;l;k þ n0;k
4ðN h þ 1Þ ¼ u2;l;k �

Ds
4
;

u0;k ¼ u1;l;k � n0;k
s1 � s0
4n

¼ u1;l;k �
Ds
8n

N h

3
þ 1� 1

N

� �
.

ð35Þ
h
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For a macro-particle with sa P s2 this gives a linear potential,
Fig
ua �
X
j;l;k

uj;l;kwj;l;k;a ¼ C þ sa
4
; ð36Þ
while for a particle with sa < s2 it results
ua ¼
sa

4nð1þ 2=N hÞ
N h

3
þ 1� 1

N h

� �
þ u1;j;k �

Ds
8n

N h

3
þ 1� 1

N h

� �

¼ C þ Ds
4

1

2
þ 1

N h

� �
þ 1

nð1þ 2=N hÞ
N h

3
þ 1� 1

N h

� �
sa
4
� Ds

4

1

2
þ 1

N h

� �� �
. ð37Þ
In order to obtain the same linear dependence as in Eq. (36), one has to set
n ¼ N h=3þ 1þ 1=N h

1þ 2=N h
. ð38Þ
To end up, note that in this Hamiltonian formulation of both the problem and the numerical scheme, the
symmetry of Â plays a fundamental role: It assures the conservation of phase integrals (Liouville�s theorem)

and the conservation of the energy in a problem with time-independent boundary conditions.
3. Results

The code has been used to simulate the plasma dynamics in a Malmberg–Penning trap for different pos-

sible experimental settings. The first case presented here refers to an electron plasma trapped in a potential
well (Fig. 1, left), the radial confinement being guaranteed by the presence of a strong, axial magnetic field.

With the three-dimensional code it is possible to investigate the limitations of the analogy between the

bounce averaged electron motion and the 2D fluid motion, valid in the limit where the axial bounce fre-

quency is much higher than the azimuthal rotation frequency. A case where the two frequencies are of

the same order (low rigidity) is presented in Fig. 2, where it is shown that a plasma column initially set

off-axis does not move rigidly perpendicularly to the axis, but is strongly distorted both axially and

transversally.

As a second example, the experimentally relevant case of an electron beam injected in a drift tube is
analyzed [14] (Figs. 3–5), which corresponds to the setting shown in Fig. 1, right. The electrons are gen-

erated from a cathode with an Archimedean spiral shape. The effect of the presence of an accelerating grid

is simulated by suitably ‘‘cutting’’ the spiral along rows and columns of a given width. The drift tube is

equipotential (grounded), but the exit section is maintained at a (strongly) positive potential, simulating

the voltage used (see [14]) to accelerate the electrons against a phosphor screen, for their imaging. Fig.

3 represents the plasma density distribution at a given time (when stationary conditions have been already

reached) in different slices transverse to the tube: the first close to the source, the last close to the collector.

The time evolution of the emitted electrons is shown in Fig. 4, which refers to the axial phase space (z,vi),
and in Fig. 5, which represents the electron distribution in the (r,z) plane.
. 1. Scheme of a trapped plasma configuration (left) and a travelling beam configuration (right). �V is the trap potential.



Fig. 2. 3D plot of the particle configuration, in the case of a trapped plasma, at t = 1.0 (left) and t = 4.0 (right). The parameters of the

run are: Meff = 0.325, L/R = 22.222, Ns = 64, Nh = 64, Nz = 128, Np = 105. The initial configuration is that of a uniform electron

column, centered at a distance 0.25 from the axis of the trap, with a radius 0.3, and located axially between z = �1 and z = 1. The plug

potentials are �100. All quantities are dimensionless.

Fig. 3. From left to right, top to bottom: projection on a plane perpendicular to the trap axis of the particles in the intervalffi3.336z6ffi1.66,ffi1.666z60, 06z61.66 and 1.666z63.33, respectively. The beam is injected atz=ffi3.33. The data refer tot= 8.0. The parameters of the run are:Meff= 9 · 1 0 ffi 2 , N s = 6 4 , N h = 6 4 , N z = 1 2 8 , N p = 10 5 , a n d v i = 1 . 0 a t t = 0 . T h e p o t e n t i a ld i ff e r e n c e b e t w e e n e m i t t e r a n d c o l l e c t o r i s 1 . 0 . T h e i n i t i a l c o n d i t i o n i s a 5 - t u r n s s p i r a l h a v i n g w i d t h = 0 . 0 5 a n d m a x i m u m r a d i u s 0 . 5 .T h e s p i r a l i s c u t b y a g r i d w i t h s t e p 0 . 1 a n d w i d t h 0 . 0 2 . 4 1 6 Y u . T s i d u l k o e t a l . / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 0 9 ( 2 0 0 5 ) 4 0 6 – 4 2 0



In particular, the formation of a ‘‘virtual cathode’’ close to the injection boundary is evidenced. The cen-

tral part of the beam is reflected back to the cathode by the space-charge of the beam itself, and only the

outer part of the beam reaches the opposite end of the trap, held at positive potential. The ‘‘annular’’ beam

which travels to the collector shows a quasi-2D evolution of vortex structures. The simulation captures the

essential physical processes found also in the experiments [10].



In almost stationary conditions, three regions can be distinguished: a reflection region close to the injec-

tion boundary, a central part with almost constant parallel velocity, and an acceleration region close to the

exit boundary.

Finally, in Figs. 6–8 the case of a plasma filling the trap is studied; the conditions are similar to the

previous case, but the exit section is held at a negative potential. This situation simulates the phase of
injection of the electrons in a Malmberg–Penning trap. In this phase, the plug electrode at the end of



Fig. 8.
the trap is maintained at a sufficiently negative potential in order to reflect the electrons entering the trap,
while the plug electrode at the entrance is grounded to let the electrons flow into the trap from the cath-

ode (starting from this configuration, the trapping phase is obtained by simply lowering the plug poten-

tial at the entrance of the beam, to the same value as the end potential, so that the electrons are

electrostatically trapped along the axis of the device). At low injection currents, one would usually expect

the formation of an electron column with almost constant density, which fills the region between the two

end sections of the cylindrical drift tube, with the maximum density increasing with the value of the plug

potential, as it is confirmed by the simulations (not reported here). However, when the input current of

the beam is further increased, new effects may take place. In particular, due to the space charge close to
the entrance, some electrons can be reflected back to the cathode. Then, the charge cloud represents a

barrier not only for the electrons which try to enter the trap, but also for the electrons which are reflected

by the negative potential at the end of the trap itself. As a result, the electron plasma which fills the trap

assumes an annular shape, as shown in Fig. 8.
4. Concluding remarks

We have shown that the MEP code gives a good description of the formation of spatial coherent struc-

tures observed in the experiments on electron plasmas trapped in a Malmberg–Penning trap with a highly

uniform magnetic field. The code has been successfully used also to describe different processes occurring in

a low-energy electron beam produced in the same configuration (in particular, the transition to a space

charge dominated regime). The description of the system is based on a drift electrostatic approximation,

which includes kinetic effects in the parallel motion. This allows to investigate phase space processes, as

kinetic equilibria and the formation of holes and coherent structures. Possible modifications of the code

concern its extension to the case of non-uniform magnetic field, and the inclusion of collisions.
(r,z) projection for the same run parameters as inFig. 6. From left to right, top to bottom, the data refer tot= 1925,t= 3775,t= 10.0, andt= 40.0, respectively.Yu. Tsidulko et al. / Journal of Computational Physics 209 (2005)406–420419
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